Expression of estrogen receptors α and β in term human myometrium

Piotr Laudański¹,²,³, Sławomir Redźko², Jerzy Przepieść², Mariusz Koda⁵, Sławomir Wołczyński⁴, Stanisław Sulkowski⁵, Jan Urban²

²Department of Perinatology, ³Department of Pathophysiology of Pregnancy; ⁴Department of Gynecological Endocrinology; ⁵Department of Clinical Pathology, Medical University of Białystok, Białystok, Poland

Received: 20 April 2004; accepted: 8 November 2004

SUMMARY

We used immunohistochemistry to compare the expression of estrogen receptors (ERα and ERβ) in term myometria of 32 pregnant women divided in two groups. Group I comprised of 16 women in labor and group II included 16 non-laboring gravidas. We observed cytoplasmatic localization of both ER isoforms and no differences in the ER expression between the two groups of patients. The abundance and specific localization of ERs in human term myometrium seems to be independent of its contractile activity which may point to the specific role of those receptors in late pregnancy myometrium. Reproductive Biology 2004 4(3): 305-311.

Key words: myometrium, pregnancy, ERα, ERβ, immunohistochemistry
INTRODUCTION

There is compelling evidence that steroid hormones, especially estrogens, play a key role in modulating the growth, differentiation and functions of different target tissues including myometrium [2]. Most of the actions of estrogens are mediated by two forms of ER: ERα and ERβ. Evidence suggests that ERs might play an important role in the timing of the onset of labor [4, 11, 12, 15]. During pregnancy, ERβ expression was increased in human term myometrial tissue compared to non-pregnant tissue, whereas ERα was highly expressed in non-pregnant myometrium, but not in term myometrium [15]. Knowledge of the distribution of ERα and ERβ in the human myometrium is therefore useful for studies on the respective functions of these ER subtypes in normal and abnormal labor. In the present study we aimed to compare the pattern of ERα and ERβ expression in the myometrium of pregnant women at term with and without labor.

MATERIALS AND METHODS

Two myometrial tissue samples (0.5 x 0.5 x 0.3 cm) were collected from the lower uterine segment during cesarean section from every of 32 pregnant woman who delivered at term. The patients were divided into two groups according to the presence or absence of labor. Labor was defined as a presence of four uterine contractions within 20 minutes with cervical dilation of more than 2 cm. Group I included woman in labor (n=16): cesarean section performed as a result of labor arrest in the first or second stage or abnormal fetal heart rate. Group II (n=16) was selected among non-laboring patients, who had elective cesarean section due to breech presentation, cephalopelvic disproportion, high risk pregnancy or repeated cesarean section. The study was approved by the Ethics Committee of the Medical University of Bialystok.

ERα and ERβ were detected by immunohistochemistry using the labeled streptavidin-biotin (LSAB) procedure [6, 7, 8]. Sections were deparaffinized in xylene, and cells were rehydrated in decreasing ethanol solutions. Endogenous peroxidase was neutralized with 2% hydrogen peroxide for 3 minutes. The
slides were subjected to heat-induced antigen retrieval using a microwave. They were then washed and incubated for 30 minutes at 22°C with a monoclonal rabbit anti-human ERα antibody (D-12, Santa Cruz Biotechnology, USA) at dilution 1:100 or a polyclonal rabbit anti-human ERβ antibody (H-150, Santa Cruz Biotechnology, USA) at dilution 1:200. The samples were then washed off, and a biotinylated secondary antibody was applied to the slides for 25 minutes in a humidity chamber. The slides were again washed and incubated with streptavidin peroxidase for additional 25 minutes and submerged in DAB bath for five minutes. The tissues were counterstained with hematoxylin. Consecutive sections (5 µm) from each tissue sample were evaluated by light microscopy (Olympus CX 40) in 10 different myometrial fields. Evaluation was based on the percentage of positive cells assuming 10% as a cutoff and intensity of immunostaining categorized as: weak (+), medium staining (++), and intense staining (+++). Positive control included myometrium taken from the operated leiomyomatosis uterus. Negative control included omission of the primary antibodies. MCF-7 cells, estrogen positive breast cancer cell line, were used to assess the quality of ERα and ERβ antibodies. Mann-Whitney test was used for statistical analysis. P-values of less than 0.05 were considered as statistically significant.

RESULTS AND DISCUSSION

All examined myometrial samples from two groups of patients exhibited ERα and ERβ expression. Both ERα and ERβ showed cytoplasmatic pattern of staining (figs. 1A and B). In a small fraction of examined cells, a nuclear localization of immunostaining for ERβ was also observed. Positive control showed nuclear ERα as well as cytoplasmatic and perinuclear ERβ staining in the leiomyomatosis uterus (data not shown) as well as in MCF-7 cells (figs. 1C and D). Specific staining was abolished in negative controls (figs. 1E and F).

The percentage of ERα immunopositive cells was similar in two groups and ranged from 63% to 84%. The respective values for ERβ were 62% to 86%. Percentage of cells stained positively for ERα (median: 75 vs. 74) and ERβ (median: 74 vs. 75) did not differ (p>0.05) between groups I and II.
Fig. 1. Immunohistochemical detection of ERα and ERβ in myometrium of women in late pregnancy. A, B/ Arrows indicate cytoplasmatic localization of ERα (fig.1A; intensity: ++) and ERβ (fig.1B; intensity: ++/+++) in myometrium. C, D/ Quality of ERα (fig.1C; arrows indicate nuclear localization of immunostaining) and ERβ (fig.1D; arrows indicate cytoplasmatic localization of immunostaining) antibodies was assessed in MCF-7 cells. E, F/ Negative controls included omission of the primary antibodies (E: ERα; F: ERβ), arrows indicate nuclei. The original magnification: 200× except fig.1D: 400×.
In the present study, we used an antibody that can recognize all ERβ variants. Interestingly, we found that ERβ expression in tissue sections was predominantly cytoplasmatic. Although ERβ has been found in the nucleus, cytoplasmatic expression of ERβ has also been described [5, 14]. To define the specificity of our ERβ antibody, we examined ERβ expression and localization in MCF-7 cells. In agreement with other reports [10], we previously have shown [6] that ERβcx (one variant the ERβ receptor) was cytoplasmatic and did not translocate to the nucleus in response to estradiol (E2) treatment, most probably because it does not bind E2 [9]. It is possible that ERβ staining in tissue sections may reflect the expression of ERβcx or other ERβ variant characterized by low E2 affinity.

Positive staining of ERα in the cytoplasm is not a novel finding neither. It has recently been reported that cytoplasmatic ERα expression accompanied by a lack of nuclear staining is characteristic for immature cells, whereas nuclear ERα indicates differentiating cells. Also a complete lack of ERα expression accompanies terminal differentiation of estrogen-sensitive cells [1]. It remains to be seen whether the cytoplasmatic staining of myometrial cells should be attributed to a given characteristic of utilized monoclonal antibody recognizing certain epitopes or is a result of immaturity of myometrial cells.

Wu et al. [15] observed switch from ERα to ERβ expression in the myometrium during pregnancy. The authors suggested that myometrial ERβ may inhibit activator protein-1 activity and thus block induction of the connexin-43 gene and other labor-associated genes which implied that labor may ensue after a loss of myometrial ERβ expression [15]. More recently it was noted that a decrease in the expression of ERα as well as progesterone receptor (PR) isoforms A and B characterizes the early phase of first stage of labor [13]. It was not, however, efficiently significant to predict the progress of labor since the concentration of both ER and PR did not correlate with duration of labor [13]. In the present study we also found that in the contractile myometrium, ERα protein expression was similar to that of ERβ. This resembles the patterns observed both in the myometrium of premenopausal women [12] and uterine endometrium during the menstrual cycle [3]. It seems plausible that in contractile uterus, estrogen
dependency might be preserved in both myometrium and in endometrium with a characteristic stable expression of ERα with ERβ.

In summary, our results provide evidence for the widespread expression of both estrogen receptor isoforms in human term myometrium regardless of its contractile activity. Cytoplasmatic immunohistochemical staining may reflect a specific role of those receptors in late pregnancy myometrium which presumably is a consequence of their functional status.

REFERENCES


